

The Role of Fuel Additives in the Future of Liquid Fuels

Alex Kulinowski, Sr OEM Advisor 41st Automotive - Petroleum Industry Forum, April 12, 2022

Presentation Outline

- Today's emission landscape
- The evolution of transportation technology
- Demonstrating the real-world benefits of fuel additives
 - GDI Gasoline
 - Diesel
- Summary

US Emissions Landscape External Forces

- Aspiration is zero emissions for transport
 - Regulators have goals of zero emission vehicles
 - CO₂ and criteria emissions
 - Corporate sustainability goals are a significant driver
 - Reduced carbon emissions/GHG are of particular interest
- Requires significant shift in vehicle technology and energy sourcing
 - OEMs are committed to zero emissions vehicles
 - Fuel industry is reformulating fuel blends to reduce carbon intensity
 - Diesel leading with RD and BD
 - Difficult to decarbonize gasoline 15% ethanol limit except in FFVs
- Fuel additives can help achieve these aspirations by controlling deposits and reducing emissions degradation

Source: BBC.com / Getty Images

AftonChemical.com

The Evolution of Engine and Fuel Technology

Lowering the Carbon Emissions of the Vehicle Parc

- Vehicle manufacturers have delivered on lowering carbon emissions
- Fuel reformulations have also resulted in lower emissions and reduced carbon intensity
- Slow fleet turnover mitigates the immediate benefit of these advances
 - Leaves older technology in the car parc
 - Necessitates a continued and significant liquid fuels market
- The liquid fuel fleet benefits from engine deposit control to avoid emissions degradation and maximize fuel economy

Transportation sector consumption by fuel AEO2022 Reference case

quadrillion British thermal units

Source: US Energy Information Administration, Annual Energy Outlook 2022

How Fuel Additives Help Lower Carbon Emissions

- Liquid fuels will be a major energy source for transportation for many years
- There is a large vehicle parc that benefits from higher fuel quality
- Fuel additives can control deposit formation in internal combustion engines
- What is the role of fuel additives in lowering carbon emissions?
- Afton completed fleet trials to answer this question
 - Real world in-use light duty evaluations of a fleet of used cars
 - Real world fuel economy monitoring of a fleet of heavy-duty trucks

Can fuel additives deliver real world benefits in reducing carbon emissions?

Restoring Fuel Economy in GDI vehicles

Fuel Additives Provide Deposit Control in GDI Engines

- Afton has developed a vehicle-based testing protocol for GDI cleanliness
 - Accelerated injector fouling
- Used as a tool to develop fuel additive technology providing enhanced GDI deposit control

Does a fuel additive developed in an accelerated lab test deliver real world performance benefits?

Source: SAE 2017-01-2298, A General Method for Fouling Injectors in Gasoline Direct Injection Vehicles and the Effects of Deposits on Vehicle Performance

Real-World GDI Fleet Study

<u>Hypothesis</u>: Real-world GDI vehicles of lower mileage (30-50k) have dirty injectors, which result in lost fuel economy. Clean-up with a first intent GDI additive can restore that lost fuel economy by cleaning up these harmful deposits.

- Vehicles bought as-is from a local dealership
- Newer model year GDI vehicles with 30 50K miles
- Fueled in the field with commercial pump fuel
- No pre-screening was conducted to determine if vehicles were "dirty"

Real-World GDI Fleet Results

<u>Hypothesis</u>: Real-world GDI vehicles of lower mileage (30-50k) have dirty injectors, which result in lost fuel economy. Clean-up with **first-intent GDI additive** can restore that lost fuel economy by cleaning up these harmful deposits

A 1.5% Fleet Average Fuel Economy Improvement Was Measured

Do Fuel Additives Deliver Real-World Benefits?

Fleet study results:

- Average 1.5% Fuel Economy Restoration
- Fuel savings of 47 gallons per year
- 920 lbs. CO₂ avoided

Yes, there is a real-world benefit!

Significant fuel savings and CO₂ avoidance is available without hardware or fuel modification by using a first-intent GDI additive

- There are about 62 million GDI vehicles on the road
- Calculations:
 - Assuming annual mileage of 11,500 for these <u>seven vehicles</u> only
 - One gallon of gasoline when combusted creates 19.6 lbs. CO₂
- If this fleet study is representative of the overall GDI car parc, the potential CO₂ reduction is a very big number!

Restoring Fuel Economy in a HD Diesel Fleet

Fuel Additives for Deposit Control in Diesel Engines

- The DW10 B test is commonly used to test for injector deposit control in HPCR injectors
- This is an accelerated test
 - Severe cycle
 - Duration: 32 hours
 - Uses Zn in the fuel as an accelerant

Does a fuel additive developed in an accelerated lab test deliver real world performance benefits?

Real-World Diesel Fleet Study

<u>Hypothesis</u>: Real-world diesel vehicles of lower mileage (150K) have dirty injectors, which result in lost fuel economy. Clean-up with first-intent HPCR diesel additive can restore that lost fuel economy by cleaning up these harmful deposits.

- No prior additive use by this fleet
- Vehicles operated under normal daily business routines
 - Real-world variability in daily operation
- Criteria were developed to parse and normalize the data
 - Engine at or very near operating temperature
 - Vehicle is at or very near "rated speed"
 - Vehicle is not coasting or idling
 - The final models are fit using linear regression

AftonChemical.com

Real-World Diesel Fleet Study

010 - 2018 Mack/Dump - 155,585 miles

009 - 2017 KW/Dump - 210,214 miles

016 - 2017 KW/Dump - 198,185 miles

122 - 2017 KW/Tractor - 285,044 miles

127 - 2017 KW/Tractor - 216,520 miles

129 - 2019 Mack/Tractor - 167,105 miles

AftonChemical.com

Real-World HD Fleet Fuel Economy Improvement

<u>Hypothesis</u>: Real-world diesel vehicles of lower mileage (150K) have dirty injectors, which result in lost fuel economy. Clean-up with **first-intent HPCR diesel additive** can restore that lost fuel economy by cleaning up these harmful deposits.

A 3.6% Fleet Average Fuel Economy Improvement Was Measured

Confirmation of Fuel Injector Cleanliness Mack Injector Tip Deposits - New, Base, and Additized SEM/EDX

New

Base (unadditized)

Additized

carbonaceous deposits around and inside injector fuel flow holes

Significant clean-up of deposits around and inside additized injector fuel flow holes

A truck with relatively low mileage can have injector deposits and benefit from additized fuel

Do Fuel Additives Deliver Real-World Benefits?

Fleet study results:

- Average 3.6 % Fuel Economy Restoration
- > 1470 gallons of diesel fuel
- > 15 MT CO₂ avoided

Yes, there is a real-world benefit!

- Significant fuel savings and CO₂ avoidance is available without hardware or fuel modification by using a first-intent diesel HPCR additive
- Assumptions:
 - Benefits for this eight-vehicle fleet only over the duration of this test
 - One gallon of diesel fuel when combusted creates 22.4 lbs. CO₂
- If this fleet study is representative of the overall HD vehicle parc, the potential CO₂ reduction is a very big number!

Summary

- The aspiration is zero emissions for transport. All stakeholders are working toward this goal.
- Liquid fuels will remain in the market for years
- Deposits are causing a loss of fuel economy over time

Source: clipground.com

Afton fleet studies show that the use of properly-formulated fuel additives can restore fuel economy, resulting in a significant reduction of CO2 emissions

Thanks for your attention